SHEET NO. INDEX OF DRAWING
DESCRIPTION
1
1
$\begin{array}{lll}1.1 & \text { \& } 1.2 \text { GLAZING DETALLS } \\ 2.2 . & \text { Sinc } \\ \text { Sill }\end{array}$

| $1,2.1 \& 2.2$ | SINGLE \& DOUBLE DOORS TTP. ELEVATIONS \& CAPACITY |
| :---: | :--- | :--- |
| $3 \& 3.1$ | SINGE \& DOUBLE DOORS |

4 THRU 4.2 LOCK OPTIONS \& LIMITATIONS TRANSOM, ELEVATIONS \& CAPACITY CHART
5 \& 5.1 HORIZONTAL RAILS, HEAD/SILL

6	VERTICAL STLLES, JAMB DETALLS
7	TRANSOM HEAD/SAM
7.1	

$7.1 \& 7.2$ WATER INFILTRATION RESISTANT DOOR DETALL
WATER INFLLTRATION RESIITANT DOOR
PARTS DRAWINGS

8	PARTS DRAWINGS
9	BILL OF MATERALS \& HINGE OPTIONS
10	CORNER CONSTRUCTION DETALLS

SERIES ENV-350
ALUMINUM OUTSWING ENTRANCE DOOR
DOORS WITH STANDARD SECTION DETAILS NOT APPROVED FOR INSTALLATIONS WHERE WATER INH
SEE SHEETS 5 \& 6 FOR DETAILS.
DOORS WITH WATER RESISTANT COMPONENTS APPROVED FOR
INSTALLATIONS WHERE WATER INFILTRATION RESISTANCE IS REQUIRED.
SEE SHEETS $7.1 \& 7.2$ FOR DETAILS.

THESE DOORS MAY BE USED IN CONJUNCTION WTH F.B.C. APPROVED LARGE MISSILE IMPACT RESISTANT STOREFRONT SYSTEM. LOWER DESIGN PRESSURE FROM DOOR OR STOREFRONT APPROVAL WILL APPLY TO ENTIRE SYSTEM.
CODE REQUIREMENTS FOR SAFEGUARDS MUST BE OBSERVED.
THIS PRODUCT HAS BEEN DESIGNED AND TESTED TO COMPLY WITH THE REQUIREMENTS OF THE 2017 (6 TH EDITION) FLORIDA BUILDING CODE INCLUDING HIGH VELOCITY HURRICANE ZONE (HVHZ).
1BY OR 2BY WOOD BUCKS \& BUCK FASTENERS BY OTHERS, MUST BE
DESIGNED AND INSTALLED ADEQUATELY TO TRANSFER APPLIED PRODUCT LOADS DESIGNED AND INSTALLED ADE
TO THE BUILDING STRUCTURE.
ANCHORS SHALL BE CORROSION RESISTANT, SPACED AS SHOWN ON DETALLS AND INSTALLED PER MANUF'S INSTRUCTIONS. SPECIFIED EMBEDMENT TO BASE MATERIAL SHALL BE BEYOND WALL DRESSING OR STUCCO
A LOAD DURATION INCREASE IS USED IN DESIGN OF ANCHORS INTO WOOD ONLY. ALL SHIMS TO BE HIGH IMPACT, NON-METALLIC AND NON-COMPRESSIBLE. MATERIALS INCLUDING BUT NOT LIMITED TO STEEL/METAL SCREWS, THAT COME INTO CONTACT WTHH OTHER DISSIMLAR MATERIALS SHALL MEET THE
REQUIREMENTS OF THE 2017 FLORIDA BLDG. CODE \& ADOPTED STANDARDS THIS PRODUCT APPROVAL IS GENERIC AND DOES NOT PROVIDE INFORMATION THIS PRODUCT APPROVAL IS GENERIC AND DOES NOT PROVIDE INFORMATION
FOR A SITE SPECIFIC PROJECT, i.e. LIFE SAFETY OF TIS PRODUCT, ADEQUACY
OF STRUCTURE RECEIVING THIS PRODUCT AND SEALING AROUND OPENING FOR OO STRUCTURE RECEIVING THIS PRODUCT AND SEALING AROUND OPENING FOR
CONDITIONS NOT SHOWN IN TEIS DRAWING AR
AND TO BE REVIEWED BY BUILDING OFFICIAL.
MANUFACTURER'S LABEL SHALL BE LOCATED ON A READILY VISIBLE LOCATION IN ACCORDANCE WITH SECTION 1709.9 .3 OF FLORIDA BUILDING CODE.

INSTRUCTIONS:

USE DRAWING AS FOLLOWS.

1. SELECT SINGLE OR DOUBLE DOORS FROM SHEETS $2 \& 2.1$ 3 \& 3.1.
2. SELECT DOOR AND FRAME SIZE
3. Determine if the door wil be instalied in an opening

WHERE THE WATER REQUIREMENT IS NEEDED OR NOT.
4. Determine dp rating from sheet 2, 2.1 or 3 \& 3.1
5. SELECT GLASS TYPE FROM SHEET 1.1.
6. SELECT LOCK OPTION AND CORRESPONDING
7. SELECT ANCHORING CONDITION AND CORRESPONDING

SELECT ANCHORING CONDITION AND CHRRESPONDING
8. SELECT JAMB OPTIONS FROM SHEET 6.
9. SELECT HINGE OPTION FROM SHEET 9.
10. DETERMINE FINAL DESIGN PRESSURE FOR THE SYSTEM,

DOORS ARE RATED FOR LARGE \& SMALL MISSIIE IMPACT SHUTTERS ARE NOT REQUIRED.

- CONTRACTOR TO BE RESPONSIBLE FOR THE SELECTON, PURCHASE AND INSTALATION OF THIS
PRYMDE HE/SHE DO
ON THIS DOCUMENT.
B- THIS PRODCOMENT. EVMLUATION DCCUMENT WILL BE CONSIDERED INVALD IF
ALTERED BY ANY MEANS. ALTERED BY ANY MEANS.
- SITE SPECIIFI PROJECTS SHALL BE PREPARED by A FLORIDA REGISTERED

SPECLIFIC DRAWINGS FOR REVEW
THIS P.E.D. SHALL EEAR THE DATE AND ORGINAL SELL AND
THE PROFESSIONAL ENGINEER OF RECORD THAT PREPARED IT.

Sealed 2/22/2019

LOCK OPTIONS: LEVEL 'D' IMPACT STD. 3 POINT LOCK (LEVEL 'D' IMPACT ONLY) MAX. LEAF WIDTH $=48 \mathrm{IN}$ MAX. DESIGN LOAD $=100$ PSF

ACTIVE LEAF:

PoInt Lock system by 'interlock' at 40 " FROM BOHOMOM SHES DEAD BOLT AND SHOOT BOLTS NGAGING AT HEAD AND SIL
EY ORERATED ON EXTERR AND THUME TURN O TERIOR
FASTENED TO ACTVE LEAF LOCK STLLE with

INACTVE LEAF:

2 POINT LOCK SYSTEM BY 'INTERLOCK' AT 40 HANDLE ACTIVATES SHOOT BOLTS ENGAGING AT FASTENED TO INACTIVE LEAF LOCK STlLE With (2) $\# 8-32 \times 2^{\text {n }} \mathrm{OH}$ MS

STD 3 POINT LOCK (LEVEL ' D ' IMPACT ONLY) MAX. FRAME HEIGHT $=120 \mathrm{IN}$. MAX. DESIGN LOAD $=100 \mathrm{PS}$

ACTIVE Leaf;

THREE POINT LOCK SYSTEM SERIES 2222 BY 'REGENT HARDWARE' EXETERIOR AND THUMB TURN ON INTERIOR WITH CONCEALED FLUSH BOLTS
LOCATED AT 40" FROM BOTTOM OF LEAF

INACTIVE LEAF:

MANUALLY OPERATED TWO POINT LOCK SYSTEM BY 'REEENT HARRWARE' WITH CONCEALED FLUSH BOLT
AT TOP \& BOTTOM OF LOCK STLLE
(2) \#8-32 $\times 1 / 4^{\prime \prime}$ PH MACHINE SCREWS

> STD. 3 POINT LOCK (LEVEL 'D' IMPACT ONLY
> MAX. FRAME HEIGHT $=109-3 / 4 \mathrm{IN}$.
> MAX. LEAF WIDTH $=48 \mathrm{IN}$.

STD. 3 POINT LOCK (LEVEL 'D' IMPACT ONLY) MAX. RRAME HEIGHT $=120$ MAX. LEAFIGN LOAD $=100$ PSF

ACTIVE LEAF:
KEY OPERATED THREE POINT LOCK SYSTEM BY ADAMS RITE' WITH CONCEALED FLUSH BOLTS AT TOP \& ADAMS RITE' WITH CONCEALED FLUSH BOLTS AT TOP
BOTTOM OF LOCK STLLE AND A THUMB TURN ON THE NTERIOR, LOCATED AT 40° FROM BOTTOM OF PANEL
FASTENED WITH
inactive lear:
MANUALLY OPERATED TWO POINT LOCK SYSTEM BY 'ADAMS RITE' WITH CONCEALED FLUSH BOLTS AT TOP BOTTOM OF LOCK STLLE
(2) \#8-32 $\times 1 / 4^{\prime \prime}$ PH MACHINE SCREWS

STD. 3 POINT LOCK (LEvEL 'D' impact only) MAX. FRAME HEIGHT $=109-3 / 4 \mathrm{IN}$ AX. LEAF WIDTH $=48 \mathrm{~N}$
MAX DESIGN LOAD $=144 \mathrm{PSF}$

PANIC EXIT DEVICE (LEVEL ' D^{\prime} IMPACT ONLY)
MAX. FRAME HEIGHT $=98 \mathbb{N}$
MAX. LEAF WITHA $=48$ IN.
ACTVE \& INACTIVE LEAE:
concealed vertical rod panic exit device \# 5770 bY 'REGENT HAROWARE' LOCATED AT 40"
FROM SILL AT E E
FASTENED WITH
(1) \#10 $\times 3 / 8$ " fh Self drluing screw at one end and

PANIC EXIT DEVICE (LLVEL 'D' IMPACT ONLY) MAX. FRAME HEIGHT $=120 \mathrm{~N}$ MAX. DESIGN LOAD $=100$ PSF

ACTVE \& INACTVE LEAF:

concealed vertical rod panic exit device \# g86 by ADAMS RTIE' LOCATED AT 40 " FROM SILL
AT EACH LEAFF
FASTENED WTH
(2) \#10-32 $\times 3 / 4^{\text {" }}$ FH MaCHINE SCREWS at one End and (2) $\# 10-24 \times 1 / 2^{m}$ FH MACHINE SCREWS AT OTHER END

PANIC EXIT DEVICE (Level 'o' impact only) MAX. FRAME HEIGHT $=120 \mathrm{IN}$
MAX. DESIGN LOAD $=100$ PSF

ACTVE \& INACTVE LEAF:

CONCEALED VERTICAL ROD PANIC EXIT DEVICE PRECISION 2800 LOCATED AT 40" FROM SILL
AT EACH LEAF,
FASTENED WITH
(2) \#10-32 $\times 3 / 4^{"}$ FH MACHINE SCREWS AT ONE END AND

PANIC EXIT DEVICE (Level 'd' impact only)
PANIC EXIT DEVICE (LEVEL ' D ' IMPACT ONLL)
MAX. LEAF WIDTH $=48 \mathrm{IN}$.
MAX. DESIGN LOAD $=144$ PSF

ACTVE \& INACTVE LEAE:

CONCEALED VERTICAL ROD PANIC EXIT DEVICE SERIES 8400/8600 BY 'SARGENT ASSA ABLOY' LOCATED AT 40
FASTENED WITH (2) \#12 $\times 1^{11}$ HH SELF DRILLING SCREW AT ONE END AND (2) $\# 12 \times 1$ HH SELF DRILLING SCREW AT ONE END AND
(2) $\# 14 \times 3 / 4^{\prime \prime}$ PH SELF DRILING SCREWS AT OTHER END

PANIC EXIT DEVICE (LEVEL 'D' IMPACT ONLY)
MAX. FRAME HEIGHT $=98$ IN.
MAX. LEAF WIDTH $=48 \mathrm{IN}$.
MAX. DESIGN LOAD $=100 \mathrm{PSF}$

ACTIVE \& INACTIVE LEAF:

VON DUPRIN 98/99' CONCEALED VERTICAL ROD PANIC EXIT DEVICE LOCATED AT 40" FROM BOTTOM
FASTENED TO ACTVE LEAF WITH WIT
6) $10-24 \times 1-1 / 8^{n}$ PH MS

ACTIVE LEAE:

THREE POINT LOCK SYSTEM SERIES 2222 bY 'REGENT HARDWARE' KEY OPERATED FROM EXTERIOR AND THUMB TURN ON INTEROR WWTH CONCEALED FLUSH BOLTS
AT TOP \& BOTTOM OF LOCK STLLE LOCATED AT 40" FROM BOTTOM OF LEAF

MAX. DESIGN LOAD $=100$ PSF

ACTIVE LEAF:

EEY OPERATED THREE POINT LOCK SYSTEM BY
ADAMS RTE' WITH CONCEALED FLUSH BOLTS AT TOP \& BOTTOM OF LOCK STILE AND A THUMB TURN ON THE
NTERROR LOCAED AT $40^{\prime \prime}$ FROM BOTTOM OF PANEL
(2) \#12-24 $\times 1 / 2^{\prime \prime}$ FH MACHINE SCREWS

nactive leaf

MANUALLY OPERATED TWO POINT LOCK SYSTEM BY
'ADAMS RITE' WITH CONCEALED FLUSH BOLTS AT TOP \&
OOTOM OF LOCK STLLE
(2) \#8-32 $\times 1 / 4^{\text {" PH MACHINE SCREWS }}$

PANIC EXIT DEVICE (LEVEL 'E' IMPACT)
MAX. FRAME HEIGHT $=98 \mathrm{IN}$
MAX LEAF WIDTH $=48 \mathrm{IN}$
MAX. DESIGN LOAD $=100$ PSF

ACTIVE \& INACTIVE LEAF:

Concealed vertical rod panic exit device precision 2800 OCATED AT 40" FROM SILL
AT EACH LEAF,
FASTENED WITH
(2) \#10-32 $\times 3 / 4^{\prime \prime}$ FH MACHINE SCREWS AT ONE END AND

PANIC EXIT DEVICE (LEVEL 'E' IMPACT)
MAX. LEAF WIDTH $=48 \mathrm{IN}$.
MAX. DESIGN LOAD $=100$ PSF

ACTIVE \& INACTIVE LEAE:

CONCEALED VERTICAL ROD PANIC EXIT DEVICE SERIES 8400/8600 BY "SARGENT ASSA ABLOY' LOCATED AT 40"
FASTENED WITH
(2) $\# 12 \times 1^{\prime \prime}$ HH SELF DRILLING SCREW AT ONE END AND (2) $\# 14 \times 3 / 4^{\prime \prime}$ PH SELF DRILLING SCREWS AT OTHER END

PANIC EXIT DEVICE (LEVEL 'E' IMPACT)
MAX. FRAME HEIGHT $=98 \mathrm{IN}$
MAX. LEAF
WIDTH
MAX. DESIGN LOAD $=100$ PSF

ACTVE \& INACTVE LEAF:

'VON DUPRIN 98/99' CONCEALED VERTICAL ROD PANIC EXIT DEVICE LOCATED AT 40 " FROM BOTTOM FASTENED TO ACTVE LEAF WITH
(6) $10-24 \times 1-1 / 8^{\prime \prime}$ PH MS

TYPICAL ANCHORS: SEE ELEV. FOR SPACING
TYPE 'A'- $\overline{5} / 16^{\prime \prime}$ DIA ULTRACON BY 'ELCO' (Fu=177 $\overline{\mathrm{kSI}, ~ F y=155 \mathrm{kSI})}$ into wood structures
$2^{n \prime}$ MIN. PENETRATION INTO WOOD (HEAD/SILL/JAMBS) THRU 1BY OR 2BY BUCKS INTO CONC. OR MASONRY $1-3 / 4^{\prime \prime}$ MIN. EMBED INTO CONCRETE (HEAD/SILL/JAMBS) $1-3 / 4^{\prime \prime}$ MIN. EMBED INTO FILED BLOCKS (JAMBS)
dIRECTLY INTO MASONRY
$1-3 / 4^{\prime \prime}$ MIN. EMBED INTO FILLED bLOCKS (JAMBS)
NTO CONCRE AND MASONRY $=2-1 / 2^{\prime \prime}$ MIN.
INTO WOOD STRUCTURE $=1-1 / 4^{\prime \prime}$ MIN.
ANCHOR CL TO CL DISTANCE
INTO CONCRETE $=3^{\prime \prime}$ MIN.
$\llcorner-$
INTO FILLED BLOCKS $=4^{\prime \prime}$ NIN.
$\left\lceil_{\text {TMPE }}{ }^{\prime}\right.$
 DIRECTLY INTO CONCRETE
DIREC/4" MIN. EMBED INTO CONCRETE (HEAD/SILL/JAMBS)
TYPE 'BB' $-\frac{5 / 16^{\prime \prime}}{}$ DIA ULTRACON BY 'ELCO' ($F u=177 \mathrm{KSI}, \mathrm{Fy}=155 \mathrm{KS}$) DIRECTLY INTO GROUT FILLED BLOCKS
$1-3 / 4^{n}$ MIN. EMBED INTO FILLED BLOCKS (JAMBS)
ANCHOR EDGE DISTANCES
INTO CONCRETE $=2-3 / 16^{\prime \prime}$ MIN.
ANCHOR CL TO CL DISTANCE
INTO FILLED BLOCKS $=5^{\prime \prime}$ MIN
־ 二 TO FILLED BLOCKS $=5^{\prime \prime} \mathrm{MIN}$.
TYPE 'C'- $\overline{5} / 16^{\prime \prime}$ DIA. TEKS OR SELF DRILING SCREWS (GRADE 5 CRS) S/16 DIA. TEKS OR SELF DRILUNG SCRENS (GRADE
OR
INTO METAL STRUCTURES
(3) THREADS MIN. PENETRATION BEYOND METAL SUBSTRATE ALUMINUM: $1 / 8^{\prime \prime}$ THK. MIN. (6063-T5 MIN.)
STEEL: $1 / 8^{\prime \prime}$ THK. MIN. (Fy $=36 \mathrm{KSI}$ MIN.)
(STEEL IN CONTACT WITH ALUMINUM TO BE PLATED OR PAINTED)

ANCHOR EDGE DISTANCES

INTO METAL STRUCTURE $=1 / 2^{\prime \prime} \mathrm{MIN}$.

- - - - CONCRETE AT HEAD, SILL OR JAMBS $f^{\prime} c=3000$ PSI MIN. C-90 GROUT FILLED BLOCK AT JAMBS f'm $=2000$ PSI MIN.

WOOD BUCKS AND METAL STRUCTURE NOT BY ENVIRALUM MUST SUSTAIN LOADS IMPOSED BY GLAZING SYSTEM AND TRANSFER THEM TO THE BUILDING STRUCTURE.

ITEm No.	Part number	QUANTITY	DESCRIPTITON	material	MANF./SUPPLIER/REMARKS
1	ENV-351	1/ LEAF	TOP RAIL	6063-T6	ENVIRALUM
2	ENV-352	1/ LEAF	BOTTOM RAIL (8" HIGH)	6063-T6	Enviralum
2.1	ENV-3521	1/ LEAF	ALT. Bottom Rail ($10^{\prime \prime}$ HIGH)	6063-T6	ENVIRALUM
3	ENV-353	1/ LEAF	Hinge stile	6063-T6	ENVIRALUM
4	ENV-354	1/ LEAF	LOCK STLLE	6063-T6	ENVIRALUM
5	ENV-355	2/ DOOR	STANDARD JAMB	6063-T6	ENVIRALUM
5A	-	2/ DOOR	NARROW JAMB	6063-T6	Enviralum
6	ENV-356	1/ DOOR	FRAME HEAD	6063-T6	ENVIRALUM
7	ENV-357	4/ LTE	GLASS STOP (INSULATED GLASS)	6063-T6	Enviralum
8	ENV-358	4/ LTE	GLASS STOP (LAMINATED GLASS)	6063-T6	ENVIRALUM
9	ENV-359	as reqd.	RAMP THRESHOLD TYPE 1	6063-T6	Enviralum
9.1	ENV-3520	As Reqd.	RAMP THRESHOLD TYPE 2	6063-T6	ENVIRALUM
9.2	ENV-3527	as reqd.	RAMP THRESHOLD TYPE 3	6063-T6	ENVIRALUM
10	ENV-3510	as read.	THRESHOLD/DOOR STOP COVER	6063-T6	ENVIRALUM
10.1	ENV-3518	as reqd.	ALT. THRESHOLD COVER (HI-RISE)	6063-T6	ENVIRALUM
11	ENV-3511	1/ DOOR	THRESHOLD TYPE 1	6063-т6	ENVIRALUM
11.1	ENV-3519	1/ DOOR	THRESHOLD TYPE 2	6063-T6	Enviralum
11.2	ENV-3526	1/ DOOR	THRESHOLD TYPE 3	6063-T6	ENVIRALUM
12	ENV-3512	$3 / \mathrm{DOOR}$	DOOR STOP	6063-T6	ENVIRALUM
13	ENV-3513	as reqd.	StLLE REINFORCEMENT, REQD. FOR DOORS ABOVE 8 FT. HIGH	6063-T6	ENVIRALUM
14	ENV-3515	4/ TRANSOM	TRANSOM SASH	6063-T6	Enviralum
15	ENV-ST2	as reqd.	$1^{\prime \prime} \times 4-1 / 8^{\prime \prime} \times 1^{\prime \prime} \times 3 / 16^{\prime \prime}$ THK. CHANNEL	Steel	ENVIRALUM
16	ENV-3516	1/ LEAF CORNER	SHEAR BLOCK	6063-T6	enviralum
17	ENV-GCO1	2/ LEAF	GUIDE CHANNEL FOR TOP \& BOTTOM PIN	6063-T6	ENVIRALUM
18	ENV-454	as read.	FLAT SNAP, 3" LONG	6063-T6	ENVIRALUM
19	ENV-3514	as reqd.	MID-RALL (OPTIONAL)	6063-T5	ENVIRALUM
21	ENV-G04	as reqd.	INTERIOR GASKET	EPDM	GLAZING RUBBER PRODUCTS
22	ENV-G06	AS REQD.	SPACER GASKET	EPDM	GLAZING RUBBER PRODUCTS
22A	ENV-606	1/ QUARTER POINT	SPACER GASKET, $1^{\prime \prime}$ Long	EPDM	GLAZING RUBBER PRODUCTS
23	ENV-SB01	1/ QUARTER POINT	$3 / 8^{n} \times 1 / 2^{n} \times 2^{n}$ SETTING BLOCKS, DUROMETER 80 ± 5	EPDM	GLAZING RUBBER PRODUCTS
24	ENV-SB02	1/ QUARTER POINT	$3 / 8^{\prime \prime} \times 1-1 / 4^{\prime \prime} \times 2^{\prime \prime}$ SETTING BLOCKS, DUROMETER 80 ± 5	EPDM	glazing rubber products
25	DOW 791	As Reqd.	GLAZING COMPOUND	SILCONE	DOWSIL
26	GE SCS2000	as reqd.	glazing Compound	SILICONE	Ge momentive
27	\#12 $\times 1-1 / 2$	4/ CORNER	FRAME ASSEMBLY SCREWS	ST. STEEL	HWH SMS, AT 16^{*} O.C.
28	\#8 $\times 5 / 8^{\prime \prime}$	as reod.	TRANSOM SASH SCREwS	ST. STEEL	AT $3^{\prime \prime}$ FROM ENDS \& $12^{\prime \prime}$ O.C.
29	\#8 $\times 5 / 8{ }^{\text {" }}$	As Reqd.	DOOR STOP ASSEMBLY SCREWS, © 3" FROM ENDS \& 20" O.C.	ST. STEEL	HWH SMS
30	ENV-BP1	2/ HINGE	HINGE BACKING PLATE, $1-1 / 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ THK. $\times 8-3 / 8^{\prime \prime}$ LONG	ALUMINUM	-
31	-	3/ LEAF	$4-1 / 2^{\prime \prime} \times 4^{\prime \prime}$ butt hinges	ST. STEEL	-
32	SL-21	1/ LEAF	CONT. GEAR HINGE	ALUMINUM	SELECT PRODUCTS LTD.
32A	PEMKO-FS	1/ LEAF	CONT. GEAR HINGE	Aluminum	PEMKO
33	1/4-20 ${ }^{1 \prime}$	10/ LEAF	CORNER BLOCK ASSEMBLY	ST. STEEL	HEX HEAD BOLT W/ WASHER
34	ENV-G01	As read.	FIXED INTERIOR GASKET	EPDM	GLAZING RUBBER PRODUCTS
37	ENV-WP1	As reqd.	WOOL PILE W'STRIPPING	TRLLOBAL YARN	ULTRAFAB
38	ENV-WP2	AS REqD.	WOOL PILE W'STRIPPING	TRILOBAL Yarn	ULTRAFAB
39	ENV-B61	as reqd.	BULB W'STRIPPING, (475 BULB W/ FLAP $\times .270$ BK.)	EPDM	Ultrafab
40	ENV-3518	AS REQD.	DRIP CAP	ALUMINUM	PEMKO
40A	\#8 $\times 5 / 8^{\prime \prime}$	As Reqd.	DRIP CAP FASTENERS, AT $3^{\prime \prime}$ FROM ENDS \& $6^{\prime \prime}$ O.C.	ST. STEEL	HWH SELF DRILLING SCREWS
41	ENV-3512	as reqd.	DOOR SWEEP (TOP)	ALUMINUM	PEMKO
41A	\#8 $\times 1 / 2^{\prime \prime}$	as reod.	DOOR SWEEP FASTENERS, AT $3^{\prime \prime}$ FROM ENOS \& 6" O.C.	ST. STEEL	FH SELF DRILLING SCREWS
42	ENV-3523	AS REQD.	DOOR SWEEP (BOTOM)	ALUMINUM	PEMKO
42 A	\#8 $\times 3 / 4^{\prime \prime}$	as reqd.	DOOR SWEEP FASTENERS, AT $3^{\prime \prime}$ FROM ENDS \& 6" O.C.	ST. StEEL	HH SELF DRILING SCREWS
43	ENV-WF1	as reqd.	WATER FLAP	EPDM	ULTRAFAB

HINGE OPTION \#1:

" $\times 4-1 / 2$ " \times. 130 " THK. ST. STEEL KNUCKLE HINGE EERIES 4001 BY 'REGENT HARDWARE' OR
SERIES FBB 191 BY 'STANLEY SECURITY SOLUTIONS' OR
SERIES TA2314/TA2714 BY 'MCKINNEY ASSA ABLOY'
PER LEAF
TOP/BOTTOM HINGES AT $7^{\prime \prime}$ FROM EACH END
ENTER HINGE AT MIDSPAN
FASTENED TO
FRAME JAMB WITH (4) $12-24 \times 1 / 2^{\prime \prime}$ FH MS DOOR STILE WITH (4) $12-24 \times 1 / 2^{\prime \prime}$ FH MS

(0)

0

HINGE OPTION \#2:
CONTINUOUS GEAR ALUMINUM HINGE 'PEMKO-FS' OR 'SELECT SL-21' ASTENED TO
FRAME JAMB WITH \# $12 \times 3 / 4$ " FH SCREWS AT $6 "$ O.C
DOOR STILE WITH $1 / 4-20 \times 1-1 / 4$ " FH MS WITH SEX BOLT AT $6 "$ O.C.

HINGE OPTION \#3:
CONTINUOUS ALUMINUM ROTTON HINGE 'PEMKO-FM' OR 'SELECT SL 27’ FASTENED TO FRAME JAMB AND TO JAMB STILE WITH (22) \#12-24 $\times 1 / 2^{\prime \prime}$ FH MS SCREWS

FL \#2070

